
Page 1/22

Molecular-substructure Deep Autoencoders Cluster
Biomolecules into Novel Band-Shaped Substructure-
Distinguished Bioactivity Clusters in 3D Latent
Space
YING TAN 

Tsinghua University
Huazhang Ying 
Xiang Wu 
Chu Qin 
Likun Zhang 
Zhicheng Du 
Jiaqi Liu 
Yu Zong Chen 

Tsinghua Shenzhen International Graduate School, Tsinghua University https://orcid.org/0000-0002-
5473-8022

Article

Keywords: Bioactive molecule, DAEs, substructure

Posted Date: June 16th, 2025

DOI: https://doi.org/10.21203/rs.3.rs-6755378/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations: There is NO Competing Interest.

https://doi.org/10.21203/rs.3.rs-6755378/v1
https://doi.org/10.21203/rs.3.rs-6755378/v1
https://orcid.org/0000-0002-5473-8022
https://orcid.org/0000-0002-5473-8022
https://doi.org/10.21203/rs.3.rs-6755378/v1
https://creativecommons.org/licenses/by/4.0/


Page 2/22

Abstract
Unsupervised deep autoencoders (DAEs) are useful for data clustering and visualization. DAE-derived
data clusters are typically visualized by dimensionality reduction methods, which have some degree of
visual distortions that pose di�culties in revealing intrinsic cluster patterns. Here, we developed
substructure-based molecular-�ngerprint DAEs (MolF-DAEs) to cluster 1.9 million bioactive molecules
(biomolecules) in 3D latent space (3DLSpace), where data clusters can be straightforwardly visualized.
MolF-DAEs developed with three established sets of molecular �ngerprints consistently cluster
biomolecules with 96.1–97.6% reconstruction rate. In 3DLSpace, the biomolecules cluster into novel
substructure-distinguished bioactivity-relevant band-shaped clusters. Each cluster is dominated by the
biomolecules of speci�c substructure combinations. These in-cluster biomolecules are of varying
molecular structures but frequently form a limited number of bioactivity classes. Our study suggests that
unsupervised deep clustering in 3DLSpace is useful for visually revealing the intrinsic data distribution
patterns and functionally relevant data clusters.

Introduction
Unsupervised learning such as deep clustering methods has been widely applied in real-life statistical
analysis such as pattern recognition1, image processing2, and knowledge discovery tasks such as

bioactive molecule (biomolecules) clustering3,4, genomics data mining5, and disease diagnosis6. One
application of deep clustering is in drug discovery, where effective clustering of biomolecules with
respect to common molecular determinants facilitates the mapping of pharmacological chemical
space7 and the investigation of structure-activity relationships8.

Various clustering methods have been developed based on the fundamental data features or their
linearly/non-linearly transformed variants9, such as K-means10,11, hierarchical clustering12 and spectral
clustering. Moreover, deep autoencoders (DAEs) are highly useful for deep and complex clustering
tasks13,14. Due to the high dimensionality, sparsity and variance of data features, these clustering
methods rely on feature representation and dimensionality reduction techniques14,15. Principal
Component Analysis (PCA), Uniform Manifold Approximation and Projection (UMAP), and t-Distributed
Stochastic Neighbor Embedding (t-SNE)16 are the most common algorithms used as a preprocessing
step to provide useful cluster patterns. Under these methods, the visualization of data clusters and the
subsequent analysis may be affected by visual distortion in the low-dimensional space. Minor visual
distortions may in some cases affect the quality of cluster analysis. For example, minor differences in
biomolecular structures (i.e. minor differences in the separation of the cluster neighbors) may lead to
substantial changes in bioactivity targets and bioactivity values 17. There is a need for effective methods
to both cluster data and visualize the undistorted cluster patterns.

DAEs 13,14 may be potentially explored for data clustering and undistorted visualization. It captures
nonlinear relationships of complex patterns while preserving both local and global characteristics18,19. In
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order for undistorted visualization of the DAE-derived data clusters, one may consider the construction
of DAEs with 3DLSpace, where the data clusters can be straightforwardly visualized in the 3DLSpace
without data distortion. A question is whether DAEs can meaningfully cluster data in 3DLSpace. Here we
developed molecular �ngerprint deep autoencoders (MolF-DAEs) to demonstrate the clustering ability of
DAEs in 3DLSpace. We further revealed the DAE-derived cluster patterns of bioactive molecules and
discussed their potential implications to drug discovery tasks.

MolF-DAEs consist of symmetric fully connected encoders and decoders, which were trained by
1.9 million biomolecules from the ChEMBL database20 represented by three sets of molecular
�ngerprints (MFs). The three sets of DAEs are the PubChem molecular �ngerprint model
(PubChemFPM), MACCS keys �ngerprint model (MACCSFPM), and 2D pharmacophore �ngerprints
model (PharmacoPFPM)21 (Fig. 1). Compared with existing methods, MolF-DAEs do not require
additional dimensionality reduction methods. Additionally, we developed a chemical space navigation
simulation software Chempack for displaying and analyzing the band cluster landscapes. Rather than
solving a speci�c downstream task prediction, MolF-DAEs aim at mining reliable experimentally obtained
high activity data to evaluate activity-related compound spatial and organism target spatial. This method
can be migrated to other types of sparse high-dimensional data mining.

Results
1. High Accuracy of Deep Autoencoders in Reconstructing Three Fingerprint Feature Maps

This work demonstrates the high e�cacy of deep autoencoders in reconstructing biomolecule
�ngerprint feature maps (Fmaps). In order to increase the e�ciency, we focus on the molecules
presenting preliminary biological activity. In total, a 1.9 million dataset with high bioactivity (Potency
Values ≤10 μM) was collected in the ChEMBL database. Three deep autoencoders are constructed to
encode three sets of molecular �ngerprint features, including PubChemFP and MACCSFP based on
SMILES arbitrary target speci�cation (SMARTS), and PharmacoPFP based on pharmacophore. The
reconstruction rates for PubChemFPM, MACCSFPM, and PharmacoPFPM reach 97.55%, 96.10% and
97.55% respectively, surpassing the reported reconstruction rates of 95.3%-96.4% from a latent space
dimension of 196 in a variational autoencoder (VAE) trained on 250,000 drug-like molecules4. It indicates
the precision of models in constructing two-dimensional Fmaps, thereby establishing their reliability in
interpreting the molecule physicochemical properties, structural fragments, and spatial distributions.
Taking the PubChemFP model as an example, the loss values stabilize around 0.0245 after 100 training
epochs (Fig.2a). Despite the correlation between the parameter count and the performance of the
models, the minimum MSE may not necessarily require the maximum number of parameters (Fig.2b).
Compared with SMILES, the Fmaps are of higher distinguishment among molecules. As the MSE
decreases, the visual improvement in the reconstruction of Fmaps becomes apparent (Fig.2c,
Supplementary Fig.1-6). Despite the low dimensional vector cause di�culties in accurately
reconstructing �ngerprints22, the majority of the original data characteristics preserved post-
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reconstruction, barring slight deviations in some local features. This attributed to the extensive training
data and feature representation methodologies. 

2. Three sets of molecular �ngerprints FP-DAEs exhibit band-shaped clustering patterns in 3DLSpace

It is intriguing to see the distribution landscape in latent space based on substructures and
pharmacophores. Overall, these distributions are orderly and highly consistent with human knowledge.
MolF-DAEs achieve optimal distribution in 3DLSpace as training progresses (Fig.3a-c). It exhibits a
discontinuous spatial distribution with distinct boundaries. Internally, molecules are arranged into bands
and each of them originates from a common central region. This arrangements was observed in
nonlinear algorithms such as UMAP, representing mappings dominated by the strong effects of major
gradient features23,24. It is observed for the �rst time in DAEs.

The latent space exhibits distinct, island-like regions—dense clusters where speci�c molecular
substructures or pharmacophore labels are uniquely enriched. These regions emerge as training
progresses, separating from the general molecular distribution to form cohesive zones, each
representing variations of a common molecular feature. Target type is a molecular feature
characterization received widespread attention25. It’s reports that over 50% of drug design targets are
concentrated in four categories, including kinase, protease, nuclear receptor and G-protein coupled
receptor (GPCR) 26. However, these target families cover only 1.45%-6.42% of experimental veri�ed
biomolecules in the 1.9 million compound database. This indicates that the space of biomolecules
remains vast. In MolF-DAEs, without any prior target information, these targets naturally appear in
relatively isolated regions  (Fig.3d-g). For example, in some of these regions, the concentrations of
speci�c targets reached the following values: kinase (71%), protease (71%), and GPCR (54%). Therefore,
MolF-DAEs demonstrate exceptional effectiveness in identifying target-speci�c clusters. Within the
PubChemFPM, kinase inhibitors are concentrated in the upper region in long islands, while protease
inhibitors are concentrated in the lower region. GPCR has fewer known drugs and more diverse natural
ligands27. The clustering of GPCR appears dispersed and concentrated in short islands (Fig.3d,
Supplementary Fig.7). 

The three most common literature-reported molecular �ngerprint features are used (Supplementary Figs.
7-9). Each of them exhibits unique clustering patterns. PubChemFPM captures the substructural
features of molecules, with target-speci�c bands with the clearest separation. In contrast, MACCSFPM
mainly focuses on the overall structure of molecules, closely connected among clusters.
PharmacoPFPM mainly describes the position, spatial relationship, and interaction pattern of
pharmacophores in molecules. It exhibits many distinctly isolated short islands in addition to the band
structures. The performance of downstream tasks is related to factors like �ngerprint types, dimensions,
compression, and redundancy22. 

3. Bands exhibit signi�cant differences in the potential biotherapeutic targets within the 3DLSpace
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The in-cluster biomolecules are of varying molecular structures but frequently form a limited number of
bioactivity classes. Signi�cant concentrations are captured in the scale of substructures, physical
properties, and targeting families. For subsequent analyses and applications, we manually select six
representative bands with clear boundaries spanning the compound space, across all �ngerprint
channels (band 1-4 PubChemFPM, band 5: MACCSFM, band 6: PharmacoPFPM) and privileged target
islands (band 1-2, 5-6 kinase, band 3 protease, band 4 GPCR). Although there is a fair number of
confusing ligands (gray), the four major target classes account for up to 34% of points (Fig.4a and
Supplementary Data 8).  Kinase is a class of targets with relatively conserved binding pockets, causing
widespread off-target effects. Kinase inhibitor takes 69.22%-84.01% in bands 1-2, 5-6 (Fig.4a) and
signi�cant changes appear among families (Fig.4b) and groups (Fig.4c). In four kinase enriched bands,
members of the Janus kinase (JakA) and Receptor tyrosine kinase (RTK) group, such as the Epidermal
growth factor receptor (EGFR) and �broblast growth factor receptor (FGFR) family exhibit highest
proportions. The Tec family is uniquely enriched in PubChemFPM band 1. EGFR inhibitors such as
Erlotinib and Ge�tinib are developed as anticancer therapeutics, mainly consisting of rings as a basic
skeleton28,29. They are enriched within the kinase cluster and positioned closely to each other, with a
distance of 25.42. The top 10 families enriched in PharmacoPFPM are more concentrated and closer in
position on inter-group and evolutionary trees (Supplementary Fig.11). Evolutionarily closely related
kinase families tend to have similar core structures, likely to cause cross-effects. Conversely, the
PubChemFP band covers a broader range of families, including a new enrichment inhibitor group with
fewer known inhibitor studies such as Tyrosine kinase-like (TKL), Calcium/calmodulin-dependent protein
kinase (CAMK) and the remainder27. The degree of enrichment varies signi�cantly in remainders.
PharmacoPFP band 5 enriches 30.61% of the Calcium/calmodulin-dependent protein kinase
group (CAMK) with fewer reported researches30,31. It indicates that relevant structures with similar
activities are sensitively captured by the model in undistorted clusters. This contributes to novel target
inhibitor pattern researches. 

4. Core substructures combination explains undistorted band-shape cluster organization

There is core structural unity and local residue diversity in  sample size, suggesting the high-quality
undistorted distribution pattern. Privileged target types exist, while the principle behind target label
clustering is limited to FMap-related substructural classes. GPCR binding fragments share a conserved
structural scaffold, whereas kinase inhibitors exhibit more variations in the scaffold and substituents.
However, distinct GPCR islands with clear boundaries and structural similarities were identi�ed in kinase-
enriched band 1 (Fig.4d). 95.21% of molecules in band 1 share hydrogen bond sites N-C-N-C including
the GPCR islands, while other GPCR-enriched bands seldom take this substructure (3.23%). In another
kinase-enriched band, the N-C-N-C-C-N structure is over twice as prevalent compared to band 1.
Molecules in the kinase island typically exhibit higher LogP, while both molecular weight and LogP of
biomolecules in the GPCR islands are lower. Thus, MolF-DAEs separate bands based on various
substructural or pharmacophore features. This further explains the intrinsic reasons for cluster-target
relation. Furthermore, this data-driven clustering contributes to drug novelty evaluation. Molecules
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contain amide bonds (-CONH-) with hydrogen bonding, and methoxy-substituted phenyl rings are
enriched in kinase island 1. The structure is common in various drugs, including anticancer, antibacterial,
and anti-in�ammatory drugs like Amitriptyline. Methoxy-substituted phenyl rings are relatively easy to
introduce in organic synthesis, and methoxy groups increase lipophilicity, affecting drug metabolism and
absorption. In kinase island 2, more substituents like methoxy (-OCH3), �uorine (-F), and chlorine (-Cl)
are present. Notably, the gray biomolecules are highly likely to be new kinase biomolecules.  

To explain the observed undistorted clustering, we summarize the common functional structural modes.
It provides a basis for binding studies. Structural analysis reveals a widespread substructural pattern.
Each band cluster primarily consists of molecules with unique scaffold or substructure combinations,
with minimal overlap with other clusters. The kinase-speci�c substructure mode involves a combination
of two elements: core hydrophobic ring elements (blue) and core hydrogen site elements (red) (Fig.5a).
These substructures account for less than 15% of the compounds in other target bands (Fig.5c,
Supplementary Fig.12b). The linear structures serve as hydrogen donors and acceptors. It is decisive for
the overall binding strength and positioning. Two kinds of linear structure are observed, one is the linear
framework and its variants, and the other is the Y-shaped frameworks and their variants. These elements
like Y-shaped N-O-N, N-S-N, N-O-CN, or L-shaped NC-N-CN, along with core hydrophobic ring elements,
are observed in Lapatinib, Imatinib and Sorafenib. Hydrophobic ring elements contain 6-membered or 5-
membered carbon rings, which is important for hydrophobicity and aids in overall stabilization. The ring
elements are connected by one or more carbon chains to the core elements. The question is which
molecular features are crucial for selective kinase targeting and potency. Compared with the overall
common background, we counted the frequency of occurrence of these substructures in 1.9 million
molecules and that on the band, respectively. In kinase- speci�c inhibitors bands, the core element
combination reaches up to 22.01 fold to background (Fig.5b, supplementary Fig. 9). This indicates that
MolF-DAEs highly select this bioactive substructure as an important feature. Overall, in PubChemFPM
regions, the linear carbon-nitrogen substructure (NC-N-C) appears in almost all known kinase inhibitors
(band 1: 100%, band 2: 99.8%) and other (band1: 95.2%, band2: 95.1%). And most of the kinase inhibitors
are connected to at least one six-membered ring (band 1: 62.2%, band 2: 40.4%) or �ve-membered ring
(band 1: 43.4%, band 2: 37.1%). MACCSFPM covers fewer chemical substructures compared to the
PubChemFPM, indicating a more concentrated distribution. There is no Y-shaped substructure
connected to six-membered rings in band 5. Pharmacophore �ngerprint primarily focuses on describing
the position, spatial relationships, and interaction patterns of pharmacophores in molecules. The
clustering of PharmacoPFPM in 3DLSpace is more pronounced, with relatively high proportions in
various feature substructures. 

Protease is another target type signi�cantly independent in the band. Peptide chains are prevalent,
exhibiting variations in C-chain length and element substitutions. In fact, protease inhibitors contest with
natural substrates peptides while not being degraded by proteases. Some unidenti�ed ligands with long
peptide chains are captured in the band, such as CHEMBL100202 and CHEMBL102898. In terms of
property labeling, this is at variance with the distribution of overall physicochemical properties of
approved drugs reported32.  Similar to peptide drug, protease-privilege bands generally have high
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molecular weights, lower logarithmic partition coe�cients (LogP) values  (indicating greater
hydrophilicity), and higher topological polar surface area (TPSA).  For example, 27% of the molecules
exhibiting a LogP below 0, which is signi�cantly higher than average for approved drugs (focus on 1-3).
The amide bonding increases the polarity of the molecule and the number of hydrogen bonding
donors/acceptors. These differences in structure and physicochemical properties tend to have lower
quantitative estimates of drug-likeness (QED) values , averaging around 0.1—well below the reported
average of 0.35. This underscores the unique structural and drug-forming properties of this
cluster32.However, these features, while conducive to protease activity, pose additional challenges in
pharmacokinetics for molecule in this band, similar to those faced by peptide drugs.

There are GPCR concentrated blocks in band 1 and band 4 despite the fact that the number of
compounds is less than half that of kinase and protease. In contrast to the kinase conserved pocket, the
natural substrates of GPCR are more mixed, including both nucleic acid substrates and peptide
substrates. In 3DLSpace, GPCR-speci�c clusters are mostly found in the form of short islands, with more
dispersed molecular clustering. Some are distributed within other target clusters, implying that they have
similar functional groups or competing substrates. However, a small number of independent long island
GPCR bands still exist in band1. Structures within islands are often very similar in speci�c lengths of
core hydrogen bonding elements (Y-shaped NCO, NCN, NCCO), combined with core hydrophobic ring
elements (R and RN)33. Islands differ mainly in substituents, such as O/N-rich islands 1 and 2, and F/Cl-
rich island 2. GPCRs have binding pockets that vary signi�cantly in nature, with F providing strong
liposolubility possibly related to binding to the water transport pocket in the transmembrane region, and
O being closely associated with the extracellular region. 

5. Relevance and distinction of sub-structural features with respect to the literature-reported privileged
pharmacophores and drug-binding mode

A question is raised about the relevance of the DAE-captured sub-structural features of an individual
band cluster to the selected bioactivities of the band cluster. Through literature-reported kinase
structures, the enriched categories are highly consistent with those reported34. Some substructural
features of the band clusters comprise key frameworks in literature-reported kinase-binding modes of
kinase inhibitor drugs, pharmacophores of kinase frequent hitters, and privileged fragments of kinase
inhibitors. The L- and Y-shaped regions are usually binding to a stabilized presence of a hinge area. Core
hydrogen bonding structures in different lengths allow for the choice of four sites that bind 2 to 3 sites to
the hinge region or gatekeepers. Hydrophobic rings, which are larger and segmented into two parts, are
more likely to extend into the E0 or back pocket to form stacking interactions. Different regions with
unique substructure patterns are selective in their binding conformation. Structural differences in the
remaining parts allow binding pockets of different conformations35. The reported kinase-binding
conformations of band 2 with short/Y-shape hydrogen sites (PDB: 9JI, 3JW, GD9, P06, 6S1, and RXT) are
in the front pocket, without the back pocket. Complexes with multiple long-chain hydrogen sites in band
1 (PDB: TZ0, R1L and UCW) occupy both the front and back pockets (Fig.6). 
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The sub-structural characterization provided by MolF-DAEs is closely consistent with the framework of
selected bioactivities and the concentration of these biomolecules within the bands. This correlation is
notably in line with the �nding that kinase-speci�c fragments can enhance kinase inhibitors by 5-fold36,
with sub-structures within individual bands exhibiting enrichments exceeding 25-fold. This concurrence
also echoes reports indicating that certain speci�c molecular scaffolds can exhibit activity against
multiple target classes. However, the substructural elements captured by MolF-DAEs diverge from the
pharmacogenetic and privileged fragments outlined in the literature in one aspect. While MolF-DAEs
capture the fundamental substructural elements and their structural variations, which collectively de�ne
the framework of pharmacogenetic or privileged fragments, kinase-speci�c structures documented in
literature often manifest as speci�c combinations of fragments, such as bis-aryl-NH-linked fragments
and biphenyl ether scaffolds37. Consequently, by assimilating the foundational elements of structural
frameworks, MolF-DAEs possess the capacity to capture a broader spectrum of pharmacogenetically
and conventionally framed speci�c structures, thereby clustering them into individual band clusters. 

Discussion
DAE is a potential deep learning-based strategy to solve the undistorted presentation and clustering.
DAEs have a predictive performance on high-dimensional datasets38 and successfully tackled

challenging tasks on millions of training samples14,39,40. In contrast to a �xed kernel function in nonlinear
functions, autoencoders are learned by optimizing the reconstruction error41. Reconstruction effects
re�ect the ability to represent potential space.

For data with high complexity such as drugs, it seems di�cult for DAE to directly downscale to 3D space
because information loss is inevitable. Thus current data such as MNIST can only be downscaled from
28×28×1 images to 128. Effort is focused on the joint methods in DAE that have been developed to
handle the space distortion challenge42,43. Visualization is satis�ed by additional downscaling methods.
Deep autoencoder (DAE) is an undistorted clustering method to handle high dimensional datasets
without additional clustering strategy. In contrast, it performs badly based on the 1.9 million biomolecule
dataset when combining traditional clustering methods (UMAP and PCA) to 3-dimensional space from
128-dimensional DAEs latent spaces. Molecules exhibit a typical spherical distribution in 3D space. It
doesn’t perform well and escapes the same target and substructure separation characteristics as MolF-
DAE (Supplementary Fig. 21).

In biological experiments, the research of biomolecules focuses on dozens or hundreds of data.
Supervised learning research of biomolecules focuses on tens of thousands of high-quality target or
disease data. Unsupervised learning breaks through the limitations of data quality. This work
demonstrates signi�cant improvements in both the size of the training dataset and the systematic
utilization of physicochemical property feature dimensions. Surprisingly, all three sets of molecular
�ngerprints for various target types exhibit a characteristic radial distribution emanating from the origin.
They exhibit target-speci�c clusters that in turn intrinsically re�ect a more essential classi�cation based
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on molecular structure. This has potential implications for biomolecule classi�cation and research. The
information obtained from the model substructures is highly consistent with human knowledge, enabling
the possibility of subdividing the biomolecules into re�ned subclasses. It offers crucial clues to
understand the relationship between the structure and activity of drugs. Meanwhile, MolF-DAEs offer the
possibility of exploring the chemical space more impartially by effectively acquiring meaningful latent
space, free from human rationality or bias. Finally, this work provides interpretability to the clustering
distribution of unsupervised models, while also aiding in tasks such as understanding target-related drug
structures, identifying potential drug candidates, and facilitating drug repurposing efforts.

MolF-DAEs offer several possible directions of application. From a drug perspective, the conserved
structures of a speci�c collection of molecules are used as a method for ligand-based virtual screening
to discover new drugs for speci�c targets. Evaluate the novelty of bioactive skeleton and diversity of
substituents. To guide the generation of new structures. From the target point of view, the biomolecule
structure and drug diversity of the target can be evaluated, and the potential off-target targets of the
compound list can be predicted. Evaluation of drug cross-reactivity of multiple proteins, etc.

In the �eld of data analysis, compounds are a class of data types that are rich in structural information
and have high-dimensional feature representations. In the future, based on this data can be migrated to
more knowledge-related types of sparse high-dimensional data for non-destructive spatial clustering
display and data mining.

Method
Data collection and labeling. Medium to high biomolecules with IC50, EC50 and Ki ≤ 10 µM through
experimental methods such as MTT assay, kinase activity test, etc., are selected as datasets, from the
pharmacochemical database ChEMBL44,45. It covers compounds from the preclinical to the approved
stage. There are 1,943,048 biomolecules in total.

Label standing for the veri�ed target is used for visualization in 3DLSpace. Molecules with activity
against four major drug target classes were queried, including kinase, protease, GPCR, nuclear receptor,
etc. 124,632 biomolecules targeting kinase (red), 92,040 targeting protease (green), 33,718 targeting
GPCR (Cyan) and 28,216 targeting nuclear receptor (purple) are obtained. Compounds with multiple
target label values were excluded during 3D visualization. 1,658,503 biomolecules targeting other types
of targets.

Construction of molecular �ngerprints Fmaps. We selected three molecular �ngerprints with the highest
citations in 1410 literature by 2024, according to the PubMed database, two substructure-key SMARTS-
based features (PubChemFP, 192 bits and MACCSFP, 476 bits), and pharmacophore-based features
(PharmacoPFP, 298 bits)46. These �ngerprints are generated based on MolMap, which is a new method
of molecular feature generation based on manifold learning21,47. We use PyBioMed to remove part of the
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PubChem molecular �ngerprint unique thermal code infrequently, reducing the original 881 dimensions
to 733 dimensions48.

Optimization of the parameters of MolF-DAEs. A pair of complementary DNNs are adopted, with an
encoder as an extractor to convert Fmaps into 3DLSpace for clustering the molecules, and a decoder to
convert the latent codes back to the original FMaps for optimizing the autoencoder. Adam optimizer is
adopted, with the loss function initially using binary cross entropy and MSE successively for 100 epochs
training expectedly. The trend of the loss function (binary cross entropy (left) and MSE (right) process of
loss function.

Where  and represents the encoder network and decoder network of MolF-DAE
respectively.

The hyperparameters of the autoencoder were optimized by the tree-structured estimator approach in
two phases49. In phase 1, the number of layers varied from 2 to 100, the number of nodes in the �rst
hidden layer was set at 2048 followed by up to 50% reductions in the subsequent layers. It proceeds until
the reconstruction rate reaches > 95% (percent of position-to-position reconstruction of the original
molecular �ngerprints), which is comparable to the reported 95.3%-96.4% reconstruction rate of an
autoencoder trained on 1,937,109 drug-like molecules4. In phase 2, the number of nodes in the hidden
layers was �ne-tuned. Phase 2 proceeds until the reconstruction rate reaches optimal value. The optimal
parameters are detailed in Supplementary Table 10. In PuChemFPM, the encoder consists of a 5-layer
fully connected neural network (DNN). In Encoder, each dense layer is followed by a ReLU activation
function. The �nal layer connects to a fully connected layer with 3 nodes. Each dense layer in the
decoder is followed by a ReLU activation function, except for the last dense layer, which employs a
Sigmoid activation function. The total parameter count is 2,697,564, approximately 2.7 million.

Comparing the sizes of individual images, MACCSFP constitutes only a quarter of PubChemFP.
Consequently, models with original parameters possess excessive total parameters for the new dataset,
leading to suboptimal Fmaps reconstruction. Models with smaller total parameters were adopted, and
the parameter space was gradually expanded to �nd the optimal parameters. During optimization, a total
parameter count of 2 million yields better training results. The composition of the 2 million parameters
network was continuously adjusted. It’s an unstable model in the task of reconstructing images from
large datasets, although the variation range of the stabilized MSE is small and within an acceptable
range. Therefore, the choice between these parameters has minimal impact on the �nal model selection.
The in�uence of model network depth, encoder structure, and total parameter count on the
reconstruction effect outweighs the impact of the model's inherent instability.

Chempack Software Demonstration

Lrec = min ∑ n
i=1∥xi − φ r (φ e (xi)) ∥21

n

φ e(. ) φ r(. )
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Accessing spatial data linearly presents challenges in quickly addressing spatial queries during the data
retrieval process and in conducting statistical analyses based on the macroscopic distribution of data in
space. To address these issues, we have developed Chempack software for fast navigation and
simultaneous display of the DAE-generated distribution landscapes of up to 50 million molecules in the
3-dimensional latent chemical space. The molecules within an on-screen subspace (a movable cubic
box) are displayed as bright spheres (in default grey color) embedded in the black background space.
Subsets of molecules may be highlighted by user-speci�ed colors (via color selector). The molecules
outside the moveable cubic box are un-displayed unless the box is moved into the local subspace. A
multi-layer iterative data retrieval and display algorithm was employed for displaying the spheres within a
local cubic box of 1/ 4N-1 (N = 1–8) of the volume of the global cubic box de�ned by the input spheres.
The following procedure created the global and local cubic box. A user manual for Chempack is provided
in the supplementary materials.

In this paper, we utilize Chempack software to visualize 3DLSpace by inputting three numerical values as
coordinate values. With the addition of labels previously annotated for 1.9 million chemical
biomolecules, these serve as the original data coordinates, enabling visualization in 3DLSpace. Different
labels are represented by different colors for visual differentiation. Chempack software assigns distinct
colors to different target types, where each target type corresponds to a speci�c color label: kinase (red),
protease (green), nuclear receptor (purple), G protein-coupled receptor (GPCR) (cyan), and other targets
(gray).
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Figure 1

Work�ow of MolF-DAEs for unsupervised clustering in construction, visualization, and analysis of
biomolecules. Symmetric DNNs are used to build MolF-DAEs. 1.9 million biomolecule data is used as an
example, but the strategy is applicable to 3D non-destructive visualisation of other high dimensional
data. Five categories of molecules are labeled according to target types (kinase-inhibitor, GPCR-binding,
nuclear receptor-binding, protease-inhibitor, and remainders). SMILES are transformed into three types of
Fingerprint FMaps. The molecular coordinates in 3DLSpace are visualized using the 3D visualization
software, Chempack. The 3D clustering is utilized for downstream applications including motif analysis
and bioactivity-related cluster analysis.
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Figure 2

Fully-connected deep autoencoder shows high accuracy in reconstructing Fmaps. (a) Training process
of the MSE models. The trend of the loss function in �rst stage (binary cross entropy) (left) and second
stage (MSE) (right) process. (b) Parameter usage and corresponding optimal MSE within different
molecular �ngerprint channels. (c) Reconstruction effect of Fmaps. Three pairs of Fmaps are shown in
different colors. The left represents the original molecular �ngerprint images, while the right represents
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the reconstructed 2D �ngerprint Fmaps. White dots denote values of 1, while colored dots (blue:
PubChemFP, green: MACCSFP, yellow: PharmacoPFP) represent values of 0, with darker colors indicating
closer proximity to 1.

Figure 3

The visualization of biomolecules within 3DLSpace, facilitated by the intuitive interface of the Chempack
software. (a-c) Distribution of 1.9 million molecules in (a) PubChemFPM (b) MACCSFPM and (c)
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PharmacoPFPM. (d-g) Distribution of biomolecules in 3DLSpace and target labeling cluster to four target
types (Red: kinase, green: protease, Cyan: GPCR). Molecules in representative clusters are colored to the
target component.

Figure 4

The overall molecule feature distributions and differences in three models in MolF-DAEs. (a) The
properties of biomolecules in six representative bands without the gray points. (b) The proportions of all
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20 kinase groups within the four kinase-enriched bands 1, 2, 5, and 6. (c) The proportions of the top 10
kinase  families within the four kinase-enriched bands 1, 2, 5, and 6. (d) Kinase and GPCR islands in
kinase-enriched band 1 and randomly chosen molecule structures and their core elements.

Figure 5

The regularity of substructures explains the patterns of band clustering. (a) Two Models and their
substructure composition elements. (b) Substructure enrichment in the 4 kinase-enriched bands
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compared to the background. (c) Samples and substructure in kinase enriched bands in three models.
(Top: PubChemFPM, middle: MACCSFPM, down: PharmacoPFPM) (d) Molecules colored with amide
bond and its variants in protease bands. (e) GPCR enriched islands colored by atomic type.

Figure 6

Binding sites of molecules in kinase-enriched bands in PubChemFPM. (a-c) Kinase inhibitors and binding
pockets in island 1 in kinase-enriched band 1. Combination pattern and pocket annotation is obtained
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from KLIFS50. (d) Kinase inhibitor and binding pocket in kinase-enriched band 2. 
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